MULTIFACTOR SPREAD MODELS FOR CAT BONDS IN THE PRIMARY AND SECONDARY MARKET

Laura Gomez Ulises Carcamo

Universidad EAFIT, Colombia.

CONTENT

- I. Introduction
- II. Preliminary Review of Models
- III. Multifactor Spread Models
- IV. Conclusions and further research

I. INTRODUCTION

Catastrophe Bonds: Collateralized securities, with contingent payments upon the occurrence of a defined catastrophic event.

Structure of a Cat Bond:

Risk Capial Issued Quarterly

Historical Returns

Risk Capital Issued

Please note this only reflects 144A P&C catastrophe bond issuance Source: Guy Carpenter

Index	Annual Returns (2002- 2012)	Volatility
Swiss Re Cat Bond Total Return Index (SCATTRR)	7.98%	2.79%
Dow Jones Credit Suisse Hedge Fund Index	6.38%	5.91%
S&P 500 Index	1.06%	16.24%
Dow Jones Corporate Bond Index	1.19%	6.70%
Private Equity Total Return Index	-2.26%	30.23%

II. PRELIMINARY REVIEW OF MODELS

Categories of Cat Bond Models according to Galeoti et al (2013):

Bond Pricing

 Cat Bond as a portfolio consisting of a variable interest bond and an option whose exercise will depend on a catastrophic event

Indifference Pricing

 Utility function, in which the indifference price is that for an agent with the same expected utility level between exercising a financial transaction and not doing so.

Premium Calculation Model

 the price which is also referred to as spread consists of the expected value of loss plus a load for risk margin and expenses.

Conclusions on each Cat Bond Models categories:

Contribution of our research:

	Previous Authors	Multifactor Spread Model
Primary Market	Focused on Expected Loss	12 Significant Variables. Most relevant: Expected Loss
Secondary Market	Focused on Probability of ocurrence of Cat events	5 Significant Variables Most Relevant: Time to maturity Factor
		*High Accuracy *General application to P&C and Life

III. MULTIFACTOR SPREAD MODELS

SPREAD IN THE PRIMARY MARKET

- Between 1997 and 2013, 248 new Cat Bonds were issued to the market.→
 Database: 194 registers
- Cross checked data. Descriptive information.
- Coupon: Floating interest rate, based on a Risk Free Rate. Libor taken as proxy.

Explanatory Variables:

	Internal		External
1)	Expected Loss	6)	BB- Bonds Index
2)	Zones covered* (USA, Europe, Mexico, Japan,	7)	Interest Rate (Libor)
	and <u>Multizone</u>)	8)	Rate on Line (ROL) Index
3)	Perils Covered* (Earthquake, Wind, Mortality,		
	Multi-peril, and Others)		
4)	Triggering Type* (Indemnity, Industry Loss		
	Index, Modeled Loss Index, Parametric Index,		
	and <u>Hybrid</u>)		
5)	Credit Rating * (Investment Grade [rated above		
	or on BBB-], Non-Investment Grade [rated		
	below or on BB+] and <u>Not Rated</u>)		

*Dummy Variables Base Category

Multifactor Spread Model:

$$\begin{aligned} Spread_{i} &= \alpha + \beta_{EL} * EL_{i} + \beta_{EUR} * EUR_{i} + \beta_{JP} * JP_{i} + \beta_{Mort} * Mort_{i} + \\ & \beta_{MP} * MP_{i} + \beta_{Ind} * Ind_{i} + \beta_{IL} * IL_{i} + \beta_{ML} * ML_{i} + \beta_{Inv} * Inv_{i} + \\ & \beta_{HY} * HY_{i} + \beta_{Libor} * Libor_{i} + \beta_{ROL} * ROL_{i} + e_{i} \end{aligned}$$

Variable	Coefficient	Std. Error	
Constant	0.03555	0.015	
Exp. loss	1.23032	0.092	
Europe	-0.02467	0.005	
Japan	-0.01277	0.006	
Mortality	-0.04188	0.010	
Multiperil	0.01698	0.004	
Indemnity	0.00996	0.005	
Industry_Loss	0.01622	0.004	
Modeled_Loss	0.01672	0.007	
Investment	-0.01136	0.006	*
High_Yield	-0.00003	0.000	
Libor	-0.00188	0.001	*
ROL	0.00011	0.000	

* Significant at a 10% confidence level

Fitness of the Regression:

SPREAD IN THE SECONDARY MARKET

- Lane Financial: Average market indication of every bond's spread on a Quarterly basis
- 81 Cat Bonds outstanding (June 2012 March 2013) → Data Base: 324 observations

Methodology:

Panel Data:

Multi-dimensional data in which variables are observed for each individual, across several points in time. A panel has the following form:

 $X_{it} \hspace{0.1in} i=1, \ldots, N \hspace{0.1in} t=1, \ldots, T$

Where i is the individual dimension and t is the time dimension.

Panel Data and Cat Bonds

• Tao (2011), and Cummins and Weiss (2009), proved Cat Bonds as a zero beta security, by developing a comparative analysis with other financial securities, using panel data.

• Gürtler et al (2012) explores the impact of the financial crisis on Cat bonds, in a dynamic stage using panel data.

Panel data for assessing the spread of Cat bonds in the secondary market has not been explored yet.

Explanatory Variables:

	Internal	External
1)	Spread at Issue	5) BB- Bonds Index
2)	Expected Loss	6) Interest Rate
3)	Credit Rating* (Investment Grade [rated	7) Swiss Re Cat Bond Total Return
	above or on BBB-], Non-Investment	, Index (SCATTRR)
	Grade [rated below or on BB+] and <u>Not</u>	index (SCALIKK)
	Rated).	
4)	Time to Maturity Factor:	
	1	
	$\overline{(T-t)}$	

*Dummy Variables Base Category

Preliminary Assesments:

Stationarity:	 Evaluated for: Indicative spread, Time to Maturity Factor, BB- Bond Index, Libor and SCATTRR. Levin, Lin & Chu Unit Root test for panel data. All p-values<= 0.05
Unobserved heterogeneity:	• Breusch-Pagan test with p-value = 0.000
Fixed Effects or Random Effects?:	• Hausman test with a p-value = 0.9993 Random Effects

Multifactor Spread Model:

$$\begin{aligned} Spread_{i} &= \alpha + \beta_{Spread} * Spread_{i} + \beta_{EL} * EL_{i} + \beta_{Maturity} * TTMFactor_{it} + \\ \beta_{HY} * HY_{it} + \beta_{SCATTRR} * SCATTRR_{it} + C_{i} + U_{it} \end{aligned}$$

Indicative Spread	Coefficient	Standard Error
Constant	0.1679	0.0728
Spread at Issue	0.8669	0.0780
Expected Loss	0.3800	0.1595
Time to Maturity Factor	-1.6966	0.5711
High_Yield	0.0003	0.0001
SCATTRR	-0.0023	0.0007

Source: Stata regressions results

Fitness of the regression modeled:

IV. CONCLUSION AND FURTHER RESEARCH

Conclusion:

The **Expected Loss** is the single most important determinant factor in the spread of a Cat Bond in the **primary market**.

>Time to maturity proved to be the most relevant factor in the secondary market.

>Although in the secondary market the **Expected Loss** remained significant, is no longer the most relevant factor.

The sign and magnitude of the **High Yield Index** is equal both in the primary and secondary market.

➢Our proposed models show to have a high accuracy on replicating the spread of Cat Bonds.
Furthermore, our models have a general application, relevant both for the P&C and Life market of Cat Bonds.

Areas for further research:

✓ To identify additional factors impacting the spread of Cat Bonds in the secondary market.

References:

- A.M. Best Company, Inc. 2012. *Rating natural catastrophe bonds*. Accessed on January 2014. Available at: <u>http://www3.ambest.com/ambv/ratingmethodology/OpenPDF.aspx?rc=197662</u>
- AON Benfield. 2012. Insurance-Linked Securities 2012: Second Quarter Update. Accessed on March 2014. Available at: http://thoughtleadership.aonbenfield.com/Documents/201207 ab securities ils quarterly update q22012.pdf
- AON Benfield. 2013. *Though Leadership. Insurance Linked Securities*. Accessed on November 2013. Available at: <u>http://thoughtleadership.aonbenfield.com/Pages/Home.aspx?ReportCategory=Insurance-Linked%20Securities</u>
- Aon Benfield. 2013. *The Aon Benfield Aggregate. Results for the year ended December 31, 2013.* Accessed on June 2014. Available at: https://www.abconnect.aonbenfield.com/ABConnect/Pages/MarketReView/MarketReView.aspx?bc=25
- Artemis. 2014. *Deal Directory*. Accessed on January 2014. Available at <u>http://www.artemis.bm/deal_directory/</u>
- Baryshnikov Y., Mayo A. and Taylor, D. R. 2011. Pricing of CAT Bonds. *Statistical Tools for Finance and Insurance*. Vol. 1, pp. 371-391.
- Bodoff, N. M., and Gan, Y. 2009. An analysis of the market price of Cat Bonds. *Casualty Actuarial Society E-Forum*. Spring, 2009.
- Braun, Alexander. 2012. Pricing in the primary market for cat bonds: new empirical evidence. *Working papers on risk management and insurance.* Vol. 116.
- Burnecki, Krzysztof, Grzegorz Kukla, and David Taylor. 2011. Pricing of catastrophe bonds. *Statistical Tools for Finance and Insurance*. Springer Berlin Heidelberg, 2011. 371-391.
- Cox, S. H., and Pedersen, H. W. 2000. Catastrophe risk bonds. *North American Actuarial Journal*. Vol 4, No.4, pp. 56-82.
- Cummins, J. D. 2008. CAT bonds and other risk-linked securities: State of the market and recent developments. *Risk Management and Insurance Review*. Vol. 11, pp. 23-47.
- Cummins, J.D. and Geman, H. 1995. Pricing Catastrophe Insurance Futures and Call Spreads: An Arbitrage Approach. *Journal of fixed Income*. March, pp. 46-57.
- Cummins, J. David, & Weiss, M. A. 2009. Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk-Transfer Solutions. *Journal of Risk and Insurance*. Vol. 76, No. 3, pp. 493-545.
- Dieckmann, S. 2008. By force of nature: explaining the yield spread on catastrophe bonds, Working Paper, Wharton School, University of Pennsylvania, Philadelphia.
- Finken, Silke, and Christian Laux. 2009. Catastrophe Bonds and Reinsurance: The Competitive Effect of Information-Insensitive Triggers. *Journal of Risk and Insurance*. Vol 76, No. 3, 579-605.
- Galeotti, M., Guertler, M., and Winkelvos, C. 2013. Accuracy of Premium Calculation Models for Cat Bonds An Empirical Analysis. *Journal of Risk and Insurance*. Forthcoming.
- Gomez, L. and Carcamo, U. 2014. A Multifactor Spread Model for Cat Bonds in the Primary Market. *North American Review of Finance*. Vol 14 (2), Forthcoming.
- Gomez, L. and Carcamo, U. 2014. A Multifactor Pricing Model for Cat Bonds in the Secondary Market. Journal of Business, Economics & Finance. Vol 3(2), p 247-258.

References:

- Guy Carpenter. 2013. *Capital Stewardship: Charting the course to profitable growth*. Accessed on January 2014. Available at: http://www.guycarp.com/content/dam/guycarp/en/documents/dynamic-content/Mid-Year-Market-Overview-Sept-2013.pdf
- Guy Carpenter. 2010. GC Capital Ideas. Catastrophe Bond update. Accessed on November 2013. Available at: <u>http://www.gccapitalideas.com/2010/04/13/catastrophe-bond-update-first-quarter-2010-%E2%80%93-heavy-smoke-some-fire%E2%80%A6encouraging-conditions-persist/</u>
- Guy Carpenter. 2013. *Mid-Year Market Overview. Capital Stewardship: Charting the course to profitable growth*. Accessed January 2014. Available at: http://www.guycarp.com/content/dam/guycarp/en/documents/dynamic-content/Mid-Year-Market-Overview-Sept-2013.pdf
- Gürtler, M.; Hibbeln, M. and Winkelvos, C. 2012. The impact of the financial crisis and natural catastrophes on CAT bonds. *Working Papers, Institut für Finanzwirtschaft, Technische Universität Braunschweig*, No.IF40V1.
- Jin-Ping, and Min-The. 2002. Pricing Default-Risky Cat Bonds with Moral Hazard and Basis Risk. *The Journal of Risk and Insurance*. Vol. 69 (1), 25-44.
- Jaeger, L., Müller, S., & Scherling, S. 2010. Insurance-Linked Securities: What Drives Their Returns?. *The Journal of Alternative Investments*. Vol 13(2), 9-34.
- Lane Financial LLC. 2013. Soft Markets Ahead? Annual Review for the Four Quarters, Q2 2012 to Q1 2013. Accessed on March 2014. Available at: http://www.lanefinancialllc.com/index.php?searchword=2006&option=com_search&Itemid=
- Lane Financial LLC. 2013. Trade Notes. Annual Review for the four quarters, Q2 2012 to Q1 2013. Accessed March 2014. Available at : <u>http://www.lanefinancialllc.com/index.php?option=com_search<emid=99999999&searchword=lane&searchphrase=any&ordering=newest&limit=30&limitstart=65</u>
- Lane, M., & Mahul, O. 2008. Catastrophe risk pricing: an empirical analysis. World Bank publications. Accessed December 2013. Available at: <u>https://openknowledge.worldbank.org/bitstream/handle/10986/6900/WPS4765.pdf?sequence=1</u>
- Loubergé et al. 1999. Using Catastrophe-Linked Securities to Diversify Insurance Risk: A Financial Analysis of Cat Bonds. Journal of insurance issues. Vol. 22, No. 2, pp.125-146.
- Risk Management Solutions (RMS). 2012. Cat Bonds demystified. RMS guide to the asset class. Standard & Poor's. Credit Ratings Definitions & FAQs.
- Standard & Poor's. Ratings. 2012. *Insurance Linked Securities*. Accessed November 2013. Available at http://www.standardandpoors.com/ratings/ils/en/us
- Standard & Poor's. 2013. *Rating Natural Peril Catastrophe Bonds: Methodology and Assumptions*. Accessed January 2014. Available at: http://www.standardandpoors.com/ratings/ils/en/us
- Tao, Z. 2011. Zero-Beta Characteristic of CAT Bonds, *BIFE '11 Proceedings of the 2011 Fourth International Conference on Business Intelligence and Financial Engineering*. pp. 641-644.
- Weber Christoph. 2011. Insurance Linked Securities. *Gabler Verlang*. Page 95.
- Young, V.R. 2004. Pricing in an incomplete market with an affine term structure. *Mathematical Finance*. Vol 14 (3), pp:359–381.

