International Finance Conference 2014

FINANCIAL MARKETS AND CORPORATE FINANCE: BEYOND THE CRISIS

Universidad Nacional Autónoma de México

Relationship between Corporate Governance Quality and Information Asymmetry an Econometric Analysis

Main Purpose:

- How affect the new regulations about Corporate Governance and IFRS adoption, to asymmetry of information ?
- To show that different methods for calculating the spread (Bid-Ask) and the methods for annualizing the intraday data affect the results of econometrics models

Context is:

- 1. The International Financial Reporting Standards (IFRS) adoption
- 2. The reduction of information asymmetry due to new corporate governance standards, and the ownership concentration that characterize the Chilean Capital Market
- 3. We test the quality of the information delivered to the market using two information disclosure indices (DIS and Botosan)

The paper contributes to the literature by analizing that the definition of spread is not neutral and may affect the robustness of the different models we analyze

Main Markets Characteristics:

- the average ownership share of the majority shareholder of the 40 stocks on the Selective Stock Price Index (IPSA, in Spanish) is 41%, whereas in a random sample of 100 companies from the S&P 500, this share amounts to only 9%
- 2. the average ownership among the first five shareholders of companies that constitute the IPSA is 69%
- 3. Chile has pass three acts to improve the capital market and strengthen corporate governance, MKI 2001, MKII 2007 and MKIII 2010
- 4. the Superintendence of Securities and Insurance (SVS, in Spanish) plays an important role in issuing regulations that require sound practices in legal and corporate governance

Economic theory associated with managing organizations

- separation of ownership and company leadership
- not alignment of objectives between management and investors
- Theory of Firms (Jensen & Meckling, 1976), is strongly linked with asymmetries in corporate information

An indirect means of measuring the information asymmetry is the bid-ask spread of stock prices

- A larger spread is associated with greater information asymmetry (Amihud & Mendelson, 1989; Coller & Yohn, 1997; Kim & Verrecchia, 1994; Bollen, Smith & Whaley, 2004)
- The evidence suggests that the spread is smaller when there is more information available (Copeland & Galai, 1983; Glosten & Milgrom, 1985)
- Financial analysts draw greater spreads when they perceive that there is more information asymmetry (Kim & Verrecchia, 1994; Coller & Yhon, 1997)

In a fully active market naturally form an equilibrium price between supply and demand, when that does not happen the bid price and the ask price arises

Table 1.Main measures on the spread observed in the financial literature

Absolute (\$)	Relative (%)
(PV-PC)	$\frac{(PV - PC)}{(PV + PC)}, \ln(PV) - \ln(PC)$
Original scale	Modified scale
(PV-PC), $\frac{(PV-PC)}{(PV+PC)}$	$\ln(\text{PV-PC}), \frac{(lnPV-lnPC)}{(lnPV+lnPC)}$
Relative at the present moment	Relative at a moment in the past
$(PV_t-PC_t), \frac{(PV_t-PC_t)}{(PV_t+PC_t)}$	$\frac{1}{2} \left[\left(\frac{(PV_t - PC_t)}{(PV_t + PC_t)/2} + \frac{(PV_{t-1} - PC_{t-1})}{((PV_{t-1} + PC_{t-1})/2)} \right) \right]$
Base only in peaks	Based on transaction price
(PV-PC), $\frac{(PV-PC)}{(PV+PC)}$	$2 \left PT - \frac{(PV - PC)}{2} \right , 2 \left \frac{(PT - PV - PC/2)}{PV - PC/2} \right \times 100$

In Table 1, PC is the purchase price of the request made, PV is the selling price of the request made, PT is the price of the transactions actually performed.

Objectives and hypothesis

Objectives

- measurement the effect of the IFRS to asymmetry of information
- understand and model the behavior in time of the bid ask
- identify and quantify the variables that determine the behavior of the spread

Hypothesis

- Hypothesis 1: There are significant differences for firms belonging to the IPSA in the study period, in terms of information asymmetry
- Hypothesis 2: There are significant differences for the sample period, in terms of information asymmetry

Methodology

- Companies traded on the Santiago Stock Exchange
- The data goes from 2007 to 2012, and correspond to data equally spaced with an intraday frequency
- 56 companies with presence in the IPSA
- Econometric univariate time series model (ARCH, GARCH, ARMA)
- Panel data model are used in the analysis

- 9.320 observations
- ARCH (2) (standard deviation as a term of the model equation)

Bid_Ask_Gasco_t = *0.504520 * @SQRT(GARCH)

GARCH = 5.56 E+12 + $0.202423^* \mu_{t-1}^2$ + $0.06652^* \mu_{t-2}^2$

 $Bid_Ask_Gasco_t = (A-B)$

(direct difference between ask and bid)

Test hipótesis distribución Logistic residuos Gasco

Method	Value	Adj. Value	Probability
Cramer-von Mises (W2)	31.78816	31.79156	< 0.005
Watson (U2)	31.78816	31.79156	< 0.005
Anderson-Darling (A2)	232.3372	232.3434	< 0.005

Pronóstico estático para la serie Bid-Ask de Gasco

Root Mean Squared Error1464059.Mean Absolute Error851996.4Mean Abs. Percent Error237.6470Theil Inequality Coefficient0.437324Bias Proportion0.142101Variance Proportion0.398694Covariance Proportion0.459205

BAF

+2SE

Estimación de los residuos para la serie Bid-Ask de Gasco

Summary of the models used for the spread of each companie

Companies	Data	Model	Iterations	Spread	R ²	Residue
Salfacorp	58.924	ARMA (4,3)	31	A-B	24%	Exponencial
Aguas Andinas	21.420	GARCHM(1,1)	31	2(A-B)/(A+B)	26%	Extreme-Max
Gasco	9.320	ARCHM(2)	15	A-B	21%	Logística
Cap	279.813	AR (2)	3	lnA - lnB	41%	t de Student
Cintac	18.284	AR (3)	3	lnA - lnB	36%	t de Student
Madeco	95.787	AR (8)	3	lnA - lnB	41%	Exponencial
Cencosud	334.833	AR (3)	3	2(A-B)/(A+B)	37%	t de Student
Masisa	82.603	AR (3)	3	lnA - lnB	37%	t de Student
Falabella	193.438	AR (5)	3	2(A-B)/(A+B)	43%	t de Student
Multifoods	78.780	AR (3)	3	2(A-B)/(A+B)	42%	t de Student

Methodology Panel data model

Endogenous variable

 spread (bid-ask) (the annual average of the differences between both prices divided by its average value)

Exogenous variables

- quantity offered for share sales (Sale_Quant), quantity offered for share purchases (Pur_Quant)
- two dichotomist variables: IFRS, IPSA
- five control variables: Leverage, Ln_Assets, P-Bursatil, Own_Inst_Inv_PF, Own_5_Shareholders
- DIS and Botosan

Spread_{it} = β_0 + β_1 *Pur_Quant_{it} + β_2 *Sale_Quant_{it} + β_3 *IFRS_{it} + β_4 *IPSA_{it} + β_5 *Leverage_{it} + β_6 *Ln_Assets_{it} + β_7 *P_Bursatil_{it} + β_8 *Own_Inst_Inv_PF_{it} + β_9 *Own_5_Shareholders_{it} + β_{10} *DIS_{it} + β_{11} *Botosan_{it} + μ_{it}

Methodology Descriptive analysis

	Mean	Maximum	Minimum	Stand. Dev.	Asymmetry	Kurtosis
Sale_Quant	26683.21	150401.2	1142.669	33196.39	1.791883	5.522053
Pur_Quant	25468.10	162203.1	1193.516	33179.99	1.999314	6.670038
Mean_DIS	0.602124	0.741176	0.482353	0.068438	0.085244	2.473136
Kurtosis_DIS	-0.971111	0.190170	-1.833589	0.475957	0.764296	3.087189
Leverage	0.912788	1.566445	0.509735	0.252914	0.557354	2.782955
Botosan	37.24306	55.50000	25.00000	6.957615	0.372145	2.200716
Ln_Assets	20.91857	23.10814	Telefinica	1.721432	-2.366565	9.771537
Own_5_Shareholders	69.61917	98.50000	7.690000	18.21537	-0.730911	3.758112
Own_Inst_Inv_PF	6.502986	26.47000	0.000000	6.758253	1.115546	3.610577
Source: Authors' calcul	ations.					

Results panel data model

Common Effect

Variable	Coefficient	Std. Error	t-Statistic	Prob.
QUANTITY_BUY	-3.44E-05	8.30E-06	-4.143303	0.0001
QUANTITY_SELL	3.40E-05	8.24E-06	4.128016	0.0001
IFRS	-0.004353	0.001625	-2.678408	0.0080
IPSA	-0.005225	0.001369	-3.816237	0.0002
LN_ACTIVOS	-0.001143	0.000359	-3.180144	0.0017
P_BURSATIL	-0.000327	3.73E-05	-8.779537	0.0000
QCG_BOTOSAN	-0.000102	5.81E-05	-1.757172	0.0804
C	0.077864	0.007439	10.46759	0.0000

Period Effect

Variable	Coefficient	Std. Error	t-Statistic	Prob.
QUANTITY_BUY QUANTITY_SELL IPSA LN_ACTIVOS P_BURSATIL QCG_BOTOSAN C	-2.76E-05 2.73E-05 -0.005108 -0.001155 -0.000354 -8.48E-05 0.076158	8.05E-06 8.00E-06 0.001312 0.000333 3.63E-05 5.26E-05 0.007094	-3.427646 3.412585 -3.894678 -3.473765 -9.759393 -1.611604 10.73559	0.0007 0.0008 0.0001 0.0006 0.0000 0.1087 0.0000
Effects Test		Statistic	d.f.	Prob.
Period Chi-sq	uare	28.80571	3 3	0.0000

Cross-Section Effect

Variable	Coefficient	Std. Error	t-Statistic	Prob.
QUANTITY_BUY QUANTITY_SELL LEVERAGE P_BURSATIL QCG_DIS C	-0.000117 0.000117 -0.000611 -0.000326 -0.136902 0.124094	2.09E-05 2.08E-05 0.000237 4.33E-05 0.023313 0.014648	-5.630246 5.623665 -2.577651 -7.524734 -5.872337 8.471540	0.0000 0.0000 0.0109 0.0000 0.0000 0.0000 0.0000
Effects Test		Statistic	d.f.	Prob.
Cross-section F Cross-section Chi-so	Juare	5.424067 223.555506	(53,149) 5 53	0.0000 0.0000

Random Effect

Variable	Coefficient	Std. Error	t-Statistic	Prob.
QUANTITY_BUY	-5.13E-05	1.04E-05	-4.937569	0.0000
QUANTITY_SELL	5.08E-05	1.03E-05	4.923513	0.0000
IFRS	-0.004764	0.001296	-3.677217	0.0003
IPSA	-0.003178	0.001301	-2.442362	0.0155
LN_ACTIVOS	-0.001644	0.000467	-3.521543	0.0005
P_BURSATIL	-0.000361	3.52E-05	-10.25983	0.0000
QCG_DIS	-0.014513	0.008940	-1.623365	0.1061
C	0.095993	0.010298	9.321321	0.0000
Hausman	ſest			
		Chi-Sq.		
Test Sumn	lary	Statistic	Chi-Sq. d.f	Prob.
Cross-secti	ion random	57.8029	09 7	0.0000

Conclusions

- We have used different models to measure the relation:
 - variables related to the quality of corporate governance, control variables, and the spread
- To validate the above relations were used different measures of spread, each of them runed with different econometric models

Regarding the paper's hypotheses:

- significant differences from the year 2009 (inclusive) for the sample firms (hypothesis 2)
- significant differences for 54 of the 56 companies in the sample (hypothesis 1)

Regulatory changes made in Chile from the law Nro. 20,448 published on August 13, 2010. Adoption of IFRS from the year 2009 by some firms in the sample. Full effect from the year 2010

Conclusions

- In addition, this study can be expanded to include and comparing different industrial sectors
- To the model will be added new variables to capture other aspects, such as, risk measurements

International Finance Conference 2014

FINANCIAL MARKETS AND CORPORATE FINANCE: BEYOND THE CRISIS

Universidad Nacional Autónoma de México

Relationship between Corporate Governance Quality and Information Asymmetry an Econometric Analysis

